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Abstract 31 

A key step in identifying global change impacts on species and ecosystems is to quantify effects 32 

of multiple stressors. To date, the science of global change has been dominated by regional field 33 

studies, experimental manipulation, meta-analyses, conceptual models, reviews, and studies 34 

focusing on a single stressor or species over broad spatial and temporal scales. Here, we provide 35 

one of the first studies for coastal systems examining multiple stressor effects across broad 36 

scales, focused on the nursery function of 20 estuaries spanning 1600 km of coastline, 25 years 37 

of monitoring, and seven fish and invertebrate species along the northeast Pacific coast. We 38 

hypothesized those species most estuarine-dependent and negatively impacted by human 39 

activities would have lower presence and abundances in estuaries with greater anthropogenic 40 

land cover, pollution, and water flow stress. We found significant negative relationships between 41 

juveniles of two of seven species (Chinook salmon and English sole) and estuarine stressors. 42 

Chinook salmon were less likely to occur and were less abundant in estuaries with greater 43 

pollution stress. They were also less abundant in estuaries with greater flow stress, although this 44 

relationship was marginally insignificant. English sole were less abundant in estuaries with 45 

greater land cover stress. Together, we provide new empirical evidence that effects of stressors 46 

on two fish species culminate in detectable trends along the northeast Pacific coast, elevating the 47 

need for protection from pollution, land cover, and flow stressors to their habitats. Lack of 48 

response among the other five species could be related to differing resistance to specific 49 

stressors, type and precision of the stressor metrics, and limitations in catch data across estuaries 50 

and habitats. Acquiring improved measurements of impacts to species will guide future 51 

management actions, and help predict how estuarine nursery functions can be optimized given 52 

anthropogenic stressors and climate change scenarios. 53 
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Introduction 54 

An important challenge in measuring impacts of global change is to determine how multiple 55 

stressors cause changes to species and ecosystem function. Estuaries and coasts are among the 56 

ecosystems that are immensely threatened yet valuable to people (Costanza et al., 1997). In these 57 

ecosystems, people and their interaction with the environment are aggregated, as are many 58 

ecosystem services such as fish production (Beck et al. 2001). Our understanding of global 59 

change in estuaries and coasts is derived from regional field studies (e.g., hypoxia effects on 60 

flatfish in Elkhorn Slough, CA, USA; Hughes et al., 2015), small scale experiments (e.g., 61 

additive, antagonistic or synergistic stressor effects on macroalgae; Vye et al., 2015), meta-62 

analyses (e.g., synthesizing interactive and cumulative effects of stressors; Crain et al., 2008), 63 

conceptual and theoretical models (e.g., Vinebrooke et al., 2004), and reviews (e.g., syntheses of 64 

multiple stressors on coral reefs; Harborne et al., 2017). Studies that examine broad temporal and 65 

spatial scales tend to be conducted in freshwater or terrestrial ecosystems (e.g., Esselman et al., 66 

2011; Ceballos et al., 2017), emphasize single species across larger geographic gradients (e.g., 67 

Cheng et al., 2015) or a single stressor across longer temporal gradients (e.g., Barceló et al., 68 

2016). Thus, we have an incomplete understanding of how threats from coastal development 69 

impact fish on large scales, and how these scalar issues relate to regional management priorities. 70 

Here, we address this knowledge gap by analyzing the effects of multiple stressors on the 71 

presence and abundance of seven fish species that rely on nursery functions of northeast Pacific 72 

coast estuaries. 73 

We define a stressor as anthropogenic changes to environmental drivers that affect 74 

estuarine habitat quality and the species that occupy those habitats. Stressors to coasts and 75 

estuaries can take many forms, including shoreline urbanization, pollution, reduced water flows, 76 

and eutrophication (Kennish, 2002; Airoldi & Beck, 2007; USEPA, 2012; Greene et al., 2015b). 77 

Although stressors can be documented directly, significant effort is required to quantitatively 78 

compare them to the condition of species, especially given interactions among multiple stressors 79 

(Vasconcelos et al., 2007; Kroeker et al., 2016; Lefcheck et al., 2017). The management 80 

implications of this are real, both in developing methods to control escalating stressors, and in 81 

determining the ongoing consequences of these stressors on protected fisheries species (Kappel, 82 

2005). Ecologists have recognized that juveniles aggregate in protective and productive shallow 83 
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habitat mosaics of coastal systems, and hypothesized that shallow habitats contribute 84 

disproportionally to adult populations (Beck et al., 2001; Dahlgren et al., 2006; Nagelkerken et 85 

al., 2015). Thus, it is advantageous to investigate effects of stressors on fish in coastal systems 86 

because (1) juveniles rely on these systems to provide critical nursery habitats, and (2) these 87 

systems are focal areas for conservation and management (Beck et al., 2001). 88 

To examine the role of multiple stressors across northeast Pacific coast estuaries (U.S. 89 

states of California, Oregon, and Washington), we focused on seven fish and invertebrate 90 

species, a subset with ample available catch data of 15 focal species previously identified by 91 

Hughes et al. (2014). These species represent major guilds, are of commercial, recreational, and 92 

cultural importance, and have life histories that encompass large portions of northeast Pacific 93 

estuaries, spanning more than 1600 km of coastline. Five of these have management targets 94 

through their listing under the U.S. Endangered Species Act and/or because they are important 95 

fisheries species – Chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus 96 

kisutch), Dungeness crab (Cancer magister), English sole (Parophrys vetulus), and Pacific 97 

herring (Clupea pallasii). Two of the species, though not tied to such targets – shiner perch 98 

(Cymatogaster aggregata) and Pacific staghorn sculpin (Leptocottus armatus) – can play 99 

important ecological roles in estuarine food-webs as secondary consumers (Hughes et al., 2014). 100 

Our assessment builds on previous syntheses of Pacific coast estuaries (Monaco et al., 101 

1990; Emmett et al., 1991; Monaco et al., 1992; Gleason et al., 2011; Hughes et al., 2014; 102 

Heady et al., 2014) by combining location-specific fish sampling with published values of 103 

stressor scores indicating levels of human impact (below, from Greene et al., 2015b). We 104 

focused on three different classes of stressors, representing (1) land cover/land use (e.g., amount 105 

developed, change from natural estuarine classes), (2) alteration of fluvial processes (e.g., 106 

changes in patterns of flow in rivers entering estuaries), and (3) sources of pollution (e.g., toxic 107 

releases and pollution discharges). The large-scale stressors that we examined include habitat 108 

alterations that impact fish populations worldwide (Bilkovic & Roggero, 2008; Able et al., 2013; 109 

Valesini et al., 2014) due to growing human populations dependent on coastal ecosystem 110 

services (Kennish, 2002; UNEP, 2006). 111 
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Our approach was to compile raw data from beach seine collections in shallow waters to 112 

examine effects of stressors on presence and abundance of the seven focal species. Our 113 

hypothesis was that there would be lower presence and abundance of fish in estuaries with higher 114 

stressor scores for species that were most estuarine-dependent and/or negatively affected by 115 

human impacts. 116 

Materials and Methods 117 

Data Collection 118 

We used the network of coastal scientists and managers associated with the Pacific Marine and 119 

Estuarine Fish Habitat Partnership to generate a pool of potential data holders of nearshore and 120 

estuarine fish. From this pool, 120 managers and researchers responded to an online survey, 121 

providing descriptions of the scope and availability of their data. This contact list expanded with 122 

additional professional referrals and estuary-specific queries of federal and state data portals to 123 

fill geographic gaps. Ultimately, more than 200 individuals from 73 different agencies were 124 

contacted regarding the data request. Beach seine data, encompassing the years 1990 to 2014, 125 

were combined from 22 sampling programs representing 20 estuaries (Fig. 1; Table S1). We 126 

prioritized datasets that sampled multiple species and specified life-stage or length parameters. 127 

Submitted datasets were compiled and uploaded to a Microsoft Access database, based on an 128 

observations data model that provided a consistent format for the storage and retrieval of point 129 

observations in a relational database. This approach is designed to facilitate an integrated 130 

analysis of large datasets collected by multiple investigators (Horsburgh et al., 2008). When 131 

geographic coordinates were unavailable, fish observations were resolved to an estuary polygon, 132 

if metadata allowed. Prior to analysis, data were queried by species, life-stage (when available), 133 

and location to include only samples collected within U.S. Pacific estuary boundaries using 134 

current National Oceanic and Atmospheric Administration (NOAA) designations. 135 

Throughout our data collection and analysis, we observed sources of data variability and 136 

constraints that limited the extent to which we could apply our analyses. Some estuaries were 137 

less sampled than others, and not all available datasets were submitted. Therefore, lack of data 138 

from one estuary did not necessarily indicate that data does not exist; it could also mean that the 139 
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data were simply not available. Data coverage within each estuary varied, as did the precision of 140 

specific measurements of latitude and longitude where sampling occurred. Also, non-target 141 

species from a study focusing on one group (e.g., salmonids) were often binned to general levels 142 

(e.g., flatfish, cancer crabs), and in those cases, could not be incorporated into our species-level 143 

assessment. Recent advances in quantitative ecology allowed us to integrate, reduce, and analyze 144 

large scale datasets from varying sources, recognizing sources of variability such as differences 145 

in experimental sampling, model parameters, and functional differences in underlying biological 146 

processes (Thorson et al., 2013). Our analysis path was chosen to best account for the variability 147 

and constraints that are expected when combining data from different research groups. 148 

Data Analysis 149 

We compared fish abundances with anthropogenic impacts on estuaries, using the stressor scores 150 

calculated for each estuary by the 2010 National Assessment (Greene et al., 2015b) (Table 1) 151 

which included habitat alterations expected to impact fish populations. Stressor scores in Greene 152 

et al. (2015b) combined 43 indicator datasets into four categories: (1) land cover/land use, (2) 153 

alteration of river flows, (3) pollution sources, and (4) eutrophication (Table S2). Of these, the 154 

first three categories had suitable coverage for the 20 estuaries in our study and were used in 155 

subsequent analyses; eutrophication was not included because it had the greatest number of data 156 

gaps and data were not available for four of the estuaries in this analysis (Greene et al., 2015b). 157 

Pollutants, river flow, and land use all showed correlations with eutrophication as summarized in 158 

Greene et al., (2015b), and this can be used to infer links to eutrophication as a stressor. 159 

The remaining three metrics were themselves indices of multiple measures (Table S2). 160 

Land use/land cover datasets evaluated recent areal land cover of agriculture, development, and 161 

estuary habitat as well as changes in these classes during the last 20 years. River flow datasets 162 

integrated numerous flow metrics, including the number of dams per watershed area as well as 163 

indicators of hydrologic alteration (Richter et al., 1996) from United Stations Geological Survey 164 

(USGS) river flow gages closest to head of tide, using 15-year averages of mean discharge, 165 

maximum and minimum discharge, high and low pulse duration, as well as the trend in these 166 

values across the entire time series. Pollution datasets included the number of mines, toxic 167 

release sites, pollution discharge sites, and hazardous waste sites per unit watershed area. Values 168 
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of each stressor were scaled 0 to 1 based on the ranks of individual datasets across estuary 169 

systems in the National Assessment, with higher values indicating greater human impacts 170 

(Greene et al., 2015b). The land cover stressor index included amount of land developed and 171 

change from natural estuarine classes, thereby acknowledging alterations from pristine states 172 

unique to each estuary. These stressors are linked to fish habitat quality and quantity. For 173 

example, development described by stress to land cover reduces the amount of estuarine nursery 174 

habitat available to juvenile fish, pollution degrades water quality, and alteration of river flows 175 

changes downstream hydrology of estuaries. Our analysis was constructed to evaluate these 176 

associations across systems and taxa. 177 

Several estuaries with fish data required interpretation of stressor scores from nearby sites 178 

or from newly acquired data. Monterey Bay values for flow were used in Elkhorn Slough, South 179 

and Central Bay values were averaged for San Francisco Bay, Drayton Bay values were used for 180 

San Juan Islands and Georgia Strait Basin, and Puget Sound values were used for South Central 181 

Puget Sound Basin. We estimated one value describing flow stress in the Salmon River, Oregon, 182 

by averaging the neighboring Nestucca and Siletz Rivers, which were similar in geographic 183 

location and flow stress values (≈13km to the north and south, respectively, values of 0.423 and 184 

0.311, average value of 0.367). We calculated flow stressor values for Coos Bay, Oregon and 185 

Yaquina Bay, Oregon using data made available after the analysis of Greene et al. (2015b). 186 

We quantified the relationship between species abundance and estuarine stressors using 187 

generalized additive mixed models (GAMMs; Zuur et al., 2009; Wood, 2011). This modeling 188 

approach was appropriate because fish catches were non-normally distributed, there were non-189 

linear annual trends in species abundance, and species were repeatedly sampled from the same 190 

estuaries and years. As is typical in fisheries investigations, the data were zero-inflated and we 191 

therefore fit two models for each species: one describing presence or absence of a species 192 

(hereafter: presence/absence model) and the other describing catch per unit effort (CPUE) when 193 

a species was present (hereafter: CPUE model). Presence/absence models were fit using a 194 

binomial distribution and a logit-link function. CPUE models were fit using a negative binomial 195 

distribution and log-link function. We used a negative binomial distribution rather than a Poisson 196 

distribution because, as often occurs in ecological data, the variance of our count data exceeded 197 

its mean (Zuur et al., 2009). 198 
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The fixed effects considered for the models were flow, land cover, and pollution 199 

stressors, and salinity zone. We used salinity zones of freshwater tidal (<0.5 ppt), mixing (0.5–25 200 

ppt), and seawater (>25 ppt). Salinity zones were assigned based on averaged field 201 

measurements from a location. If salinity data were unavailable, we used the NOAA 3-Zone 202 

Average Annual Salinity Digital Geography layer (spatial join w/ 50m buffer). If no field data or 203 

NOAA digital data existed, the location was assigned the salinity class of the nearest classified 204 

point (nearest neighbor ID) and reviewed by a regional expert for accuracy. Each estuary and 205 

combination of estuary and calendar year was treated as a random intercept. This accounted for 206 

non-independence of samples taken repeatedly from the same system and during the same years, 207 

due to unmeasured conditions specific to estuaries or years that were outside the scope of our 208 

study. The log-transformed length of the net was treated as an offset to account for differences in 209 

sampling intensity due to variable net sizes. 210 

We used a smoother to account for annual trends of species abundance using the day of 211 

year as the explanatory variable. Smoothers were constrained to connect day 365 to day 1 and 212 

limited to four knots to avoid overfitting the model. The annual timing of Chinook and coho 213 

salmon differed among salinity zones, which was consistent with their anadromous life histories. 214 

Models describing these species were therefore fit with a unique smoother describing annual 215 

trends in abundance for each salinity zone. Chinook salmon and herring captured in San 216 

Francisco Bay showed unique trends in annual abundances, and sampling dates were adjusted so 217 

that peak abundances were centered to other estuaries. For Chinook salmon, this adjustment was 218 

done separately for each salinity zone to be consistent with the parameters in the model. The 219 

number of days by which to offset dates was determined by visualizing annual time series of the 220 

data via local regression and comparing annual peaks in San Francisco Bay to those for all 221 

estuaries combined. 222 

We used multi-model inference to select and estimate the values of parameters that 223 

influenced fish abundances. First, we fitted a group of candidate models that included all 224 

combinations of model parameters describing estuarine stressors. All candidate models included 225 

smoothed day of year and salinity zone parameters because abundances of these fish were well 226 

known to vary among seasons and salinities. If fitting a candidate model produced convergence 227 

warnings, we first eliminated the random effect of year from the global model, and if warnings 228 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

persisted we eliminated from consideration the candidate model. From these candidate models, 229 

we retained those within 7 AIC of the model with the lowest AIC because this range is likely to 230 

include models ranging in support from “substantial” to “considerably less,” but not “essentially 231 

none” (Burnham & Anderson, 2002). We then reported estimates of parameters calculated by 232 

averaging, when present, their values among the retained candidate models. 233 

If parameter estimates suggested a significant (P < 0.05) effect of an estuarine stressor on 234 

fish, we performed a sensitivity analysis and cross-validated our models to examine how well 235 

they fit and predicted our data. Given large variance in sampling intensity among estuaries, we 236 

tested how sensitive our models were to the exclusion of data from each estuary. We expected 237 

parameter estimates of a robust model to change minimally depending on the presence of data 238 

from any one estuary. Next, we estimated how well our models fit and predicted the data by 239 

fitting models using 80% of the data and examining how well they predicted observations in the 240 

remaining 20% (Albouy-Boyer et al., 2016). We randomly selected portions of the data for these 241 

training and testing models, and repeated training and testing 10 times for each model to quantify 242 

how our estimates of model fit varied due to the random selection procedure. For CPUE models, 243 

we compared predicted and observed data using Spearman’s rank correlation coefficient, which 244 

ranges from -1 to 1, indicating perfectly negative or positive relationships, respectively, between 245 

observed and predicted values. For presence/absence models, we compared predicted and 246 

observed data using the true skill statistic (Allouche et al., 2006), which ranges in value from -1 247 

to 1, with values less than zero indicating no predictive ability and 1 indicating perfect predictive 248 

ability. 249 

When models indicated a significant relationship between stressors and fish, we used 250 

their outputs to estimate predicted fish catches among estuaries. These metrics were calculated 251 

by making predictions from all candidate models within 7 AIC of the model with the lowest AIC 252 

and weighted averaging their results according to their AICs (Bartoń, 2016). These predictions 253 

were based on sampling in the mixing zone and on the median day of year sampled for each 254 

species. Values were classified using Jenks natural breaks in ArcMap 10.4.1. Modeling analysis 255 

was conducted in R version 3.2.2 (R Core Team, 2015) using the mgcv (Wood, 2015) and 256 

MuMIn (Bartoń, 2016) packages. 257 
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Results 258 

Overall data coverage 259 

There were 205,452 individual records of the seven focal species of juvenile fish and 260 

invertebrates representing sampling events spanning the years 1990 to 2014 (Table S3). These 261 

species occurred broadly across the 20 estuaries (Fig. 2), but not every combination of estuary 262 

and species was represented. There was a range of four to seven species in each estuary (mean 263 

5.5), and a range of 13 to 19 estuaries with coverage for each species (mean 16). If a species was 264 

observed in a given salinity zone in fewer than three estuaries, these observations and thus the 265 

parameter estimate for that salinity zone were excluded from analysis. 266 

Data Analysis 267 

We fitted presence/absence and CPUE models for all species (Fig. 3), detecting negative effects 268 

of estuarine stressors on Chinook salmon and English sole. The presence and abundance of all 269 

species were greatest in the spring and summer (e.g., Fig. S1), and the presence and abundance 270 

of many species varied among salinity zones (Fig. 3). Visualizations of the raw data and 271 

information describing candidate models used to select and estimate model parameters are 272 

provided in Appendix S1. 273 

The presence of Chinook salmon was significantly lower in estuaries that were more 274 

polluted (P = 0.011; Fig. 3, Appendix S1). Pollution was present in both candidate models used 275 

to estimate parameters, suggesting that pollution was a major, negative influence on the presence 276 

of Chinook salmon. No single estuary seemed to drive the negative relationship between 277 

pollution and Chinook salmon presence, but this relationship was not statistically significant 278 

when three of 18 estuaries were individually excluded (those with the most southern extent). 279 

Models describing the presence of Chinook salmon from part of our data were able to 280 

moderately predict observations of the remaining data (true skill statistic mean ± SE: 0.31 ± 281 

0.0028). The presence of most species varied by salinity zones. For example, both anadromous 282 

salmon species were less likely to be present in the seawater zone and more likely to be in the 283 

tidal fresh zone, whereas English sole, herring, shiner perch, and staghorn sculpin were more 284 

likely to be present in the seawater zone. 285 
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When fish were present, there were significantly fewer Chinook salmon in estuaries that 286 

were more polluted (P = 0.040; Fig. 3, Appendix S1) and significantly fewer English sole in 287 

estuaries with greater land cover stress (P = 0.008; Fig. 3, Appendix S1). There was also a 288 

pattern of fewer Chinook salmon in estuaries with greater flow stress, but this trend was 289 

marginally insignificant (P = 0.057). Only flow and pollution were present in candidate models 290 

used to estimate parameters describing the abundance of Chinook salmon, suggesting that they 291 

had major, negative influences on the abundance of this species. No single estuary seemed to 292 

drive the negative relationship between pollution and Chinook salmon abundance, but this 293 

relationship was not statistically significant when six of 18 estuaries were individually excluded 294 

(including the same three as for presence/absence models). In addition, our models detected 295 

significantly fewer Chinook salmon in estuaries with greater flow stress when data were 296 

excluded from six estuaries. Of the five candidate models used to estimate parameters describing 297 

abundances of English sole, land cover was only present in one, indicating significant but limited 298 

support for the inclusion of this parameter in the final model. The negative relationship between 299 

land cover stress and the abundance of English sole was statistically significant regardless of 300 

whether data were excluded from any one estuary. Notably, our models detected significantly 301 

more English sole in estuaries with greater flow stress when data were excluded from one 302 

estuary. Models from part of our data were moderately able to predict observations of the 303 

remaining data describing abundances of Chinook salmon and, to a greater degree, English sole 304 

(Spearman’s rank correlation coefficient mean ± SE: 0.27 ± 0.0053 and 0.46 ± 0.011, 305 

respectively). CPUE for four of the species were influenced by salinity, with similar patterns to 306 

those for species presence/absence. 307 

We used GAMM parameter estimates and estuary-specific stressor scores to predict 308 

catches of the two fishes significantly affected by stressors (Figs. 4 and 5; Table S4). The 309 

presence and CPUE of Chinook salmon were predicted to be lower among estuaries with greater 310 

stress values of pollution. Thus, GAMM outputs demonstrated that estuaries substantially 311 

affected by these stressors, such as San Francisco Bay, the South Central basin of Puget Sound, 312 

and Coos and Yaquina Bays, would have lower presence and CPUE of Chinook salmon relative 313 

to less stressed estuaries, such as Nehalem and Chetco Rivers for presence, and Alsea Bay and 314 

the Columbia River for CPUE. Predicted abundances of English sole were less intuitive because, 315 

although we detected a significantly negative relationship between their abundances and land 316 
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cover stress, this relationship had limited support in candidate models. Thus, predictions of 317 

English sole CPUE reflected the conditions of these estuaries to all three stressors. Predicted 318 

abundances were highest in estuaries with great flow stress and low to moderate land cover 319 

stress, such as Yaquina and Coos Bays. 320 

Discussion 321 

Here we have provided new, empirical evidence that the effects of stressors from human land-322 

use/cover, pollution, and altered river flow culminate in detectable depressions of some fish 323 

species on a coastal scale. Specifically, Chinook salmon were less likely to occur and were less 324 

abundant in more polluted estuaries. When present, Chinook salmon also tended to be less 325 

abundant in estuaries with greater flow stress, although this trend was marginally insignificant. 326 

In addition, English sole were less abundant in estuaries with greater land cover stress. Our novel 327 

findings build upon regional field studies, experimental manipulation, meta-analyses, models, 328 

reviews, and studies focusing on a single stressor or species over broad spatial and temporal 329 

components that have shown stressors can threaten fishes (Minello et al., 2003; Vinebrooke et 330 

al., 2004; Crain et al., 2008; Cheng et al., 2015; Hughes et al., 2015; Vye et al., 2015; Barceló et 331 

al., 2016; Harborne et al., 2017; Munsch et al., 2017). Estuaries are increasingly drawing 332 

conservation attention because of recognition that they serve as critical habitats for fish (Beck et 333 

al., 2001), and we demonstrate on a coast-wide basis that such efforts are for good reason. 334 

The two species that experienced negative stressor effects are known to rely on estuarine 335 

habitats and respond on finer scales to habitat degradation. Estuaries are important nursery 336 

habitats for outmigrating juvenile Chinook salmon where they forage, acclimatize to marine 337 

environments, and avoid predators (Simenstad et al., 1982; Weitkamp et al., 2014; Hughes et al., 338 

2014; Munsch et al., 2016). Wild juvenile Chinook salmon use estuarine environments more 339 

extensively than hatchery Chinook salmon (Rice et al., 2011; Roegner et al., 2012), emphasizing 340 

the importance of these systems for naturally-produced fish. Contaminants can accumulate in 341 

tissues of juvenile Chinook salmon (Meador et al., 2016), and impediments to water flow (e.g., 342 

dams) can alter the morphology of nearshore environments and restrict access to critical upriver 343 

habitats (O’Connor et al., 2015). There are also linkages between nursery habitats and stressors 344 

to land cover for English sole. For example, juvenile English sole from estuaries contribute more 345 
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to adult populations than do those from coastal waters (Brown, 2006), and are unable to hide 346 

from predators by burrowing where shoreline armoring has displaced soft sediment (Toft et al., 347 

2007; Munsch et al., 2015). Thus, there are causal explanations that support our observed 348 

patterns between stressors and habitat use for Chinook salmon and English sole. Accordingly, 349 

managers should consider that flow, land cover, and pollution stressors are limiting estuarine 350 

habitat use and, potentially, production of these species.  351 

Perhaps what is most surprising is that we did not detect coast-wide negative effects of 352 

stressors on five of the species. One explanation is that some of these species may depend less on 353 

estuarine habitats, or that they can use a wider range of habitats, including novel environments 354 

created by people (Hobbs et al., 2014). For example, finer-scale effects of land cover 355 

(Magnusson and Hilborn, 2003) and pollution (Johnson et al., 2007; Meador et al., 2016) are 356 

more detectable in Chinook than co-occurring coho salmon or staghorn sculpin. Juvenile coho 357 

salmon typically rear mainly in natal streams and migrate to the ocean as yearlings, and may 358 

react more to alterations in freshwater rearing areas (but see Jones et al., 2014 for estuary-359 

resident life histories). Also, documented threats to staghorn sculpin and shiner perch in estuaries 360 

are minor (Hughes et al., 2014). Another explanation for lack of trend detection in some species 361 

is limitations in our data. Fisheries data, especially when acquired opportunistically, are 362 

characterized by low ratios of signal to noise, and imbalanced representation of species, places, 363 

and times. We suspect that it is no coincidence that the clearest trends were detected in Chinook 364 

salmon, a well-studied species protected under the Endangered Species Act. A parsimonious 365 

interpretation of our results is that (1) anthropogenic stressors on estuaries probably degrade the 366 

habitats of many species, and (2) we detected trends between specific stressors and species that 367 

relied most on habitats altered by stressors and were sampled well enough to produce detectable 368 

trends. 369 

Factors outside the scope of our study should also be considered in the interpretation of 370 

our results. Although we focused on juvenile stages of fish, adult fish are subject to impacts in 371 

coastal zones (Lester et al., 2010; Archambault et al., in press), as are eggs and larval 372 

development by loss of spawning habitat (Siple & Francis, 2016). Analysis of historic change is 373 

another approach, and has shown negative anthropogenic effects on Pacific herring (Greene et 374 

al., 2015a). Other environmental factors contribute, such as Dungeness crab fluctuating due to 375 
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hypoxia caused by anthropogenic nutrient loading in estuaries, and upwelling conditions in open-376 

coast systems (Grantham et al., 2004). We note that the stressors we analyzed correlate with 377 

eutrophication (Greene et al., 2015b), and have been used in other studies as a proxy for 378 

eutrophication (e.g., land-cover in Honig et al., 2017), suggesting that stressors such as 379 

eutrophication are also contributing factors. Beach seines sample shallow waters, and thus 380 

implications are centered on riverine estuaries mainly in Washington and Oregon, in part because 381 

species such as Dungeness crab, English sole, and Pacific herring are more apt to occupy colder 382 

deeper waters in the southern part of their range in California. Our focus on presence and 383 

abundance of seven species also precluded an assemblage, density, or species richness analysis 384 

(Monaco et al., 1992; Harley et al., 2001; Courrat et al., 2009; Nicolas et al., 2010), which 385 

would provide additional information such as how climate-driven processes affect fish 386 

community structure (Feyrer et al., 2015; Barceló et al., 2016). All of these examples illustrate 387 

that some stressors have more identifiable impacts than others, depending on a myriad of factors 388 

that can be estuary, habitat, or species and life-stage specific, and varying on spatial 389 

biogeographic and temporal scales. 390 

Independent of stressors, we also demonstrated associations of fish species with salinity 391 

zones, which can inform species-specific responses to climate impacts, such as changes in river 392 

flow and sea level rise. These associations are well appreciated among estuarine biologists, but 393 

broad landscape patterns have often been based more on expert knowledge (Monaco et al., 1990) 394 

than on quantitative information across systems. Our analysis revealed strong associations 395 

consistent with contrasting life histories of our focal species: juvenile salmon enter estuaries after 396 

migrating downstream from riverine spawning grounds, and so show negative associations with 397 

the higher salinity zone as they move offshore away from shallow waters, amid other potential 398 

reasons such as mortality as they out-migrate. In contrast, marine fish, such as English sole, 399 

spawn in coastal areas, thus associations favor higher salinities. Systematic data on salinity 400 

variation would likely highlight even stronger associations, as salinity zones can change 401 

dramatically within and between years in response to changes in river hydrographs (Yang & 402 

Khangaonkar, 2008) and seasonal closures of estuaries by sand spits (Behrens et al., 2013). 403 

Nevertheless, these patterns suggest that long-term impacts of climate change, such as changes in 404 

riverine hydrographs and sea level rise, are an essential consideration for estuarine-dependent 405 

species and may alter habitat and species distributions. 406 
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Considering our findings, what can we do to promote the sustainability of fish that 407 

depend on estuaries during critical life-stages? First, we can minimize or continue to ban 408 

contaminants, such as polychlorinated biphenyls (PCBs) that persist in riverine and estuarine 409 

food webs years after chemical use is discontinued (e.g., West et al., 2017). In particular, 410 

Chinook salmon near wastewater treatment plants accumulate many contaminants of emerging 411 

concern (Meador et al., 2016), including some that impair liver mitochondrial function (Yeh et 412 

al., 2017). Next, we can conserve or restore biogenic fish habitats (e.g., seagrass meadows, 413 

oyster reefs) that maintain water quality for coastal systems, but have been degraded due to 414 

human activities (Lotze et al., 2006; Lamb et al., 2017). Managing water flow is an ongoing 415 

challenge in coastal systems worldwide, and maintaining a balance between human needs (e.g., 416 

water consumption and diversion; Cloern & Jassby, 2012), and fish health will be key to 417 

sustaining coastal ecosystem services. We can also reduce land cover stress by minimizing 418 

impervious surfaces, particularly shoreline armoring that degrades coastal fish habitats (Munsch 419 

et al., 2017). Finally, we can conserve or repair lost connectivity across the estuarine landscape. 420 

The size of available nursery area can lead to higher estuary production (Rooper et al., 2004), 421 

and juvenile English sole may rely on different parts of the estuary at different times (Chittaro et 422 

al., 2009), suggesting that they benefit from habitat mosaics that are not fragmented by threats to 423 

land cover. Overall, there are many ways that we can improve the quality of estuarine habitats, 424 

and our study suggests that certain species, particularly during life-stages associated with 425 

shallow waters, may respond to conservation efforts that target specific stressors. 426 

Targeting the stressors in our analysis as a management goal will be challenging, 427 

especially with continued coastal development in the ecotone between land and water (Halpern 428 

et al., 2009). The estuaries predicted to have lower abundance of Chinook salmon have 429 

substantial human impacts with numerous drivers of change and corresponding fish declines 430 

(e.g., San Francisco Bay and Puget Sound; Emmett et al., 2000; Brown & Moyle, 2005). 431 

Furthermore, estuaries with low stressor values and high predicted fish numbers (many on the 432 

Oregon coast) does not imply that there are no impacts. For example, flow stress in the Columbia 433 

River is represented as low (Greene et al., 2015b) because it carries large volumes of water 434 

despite documented human impacts and lower flows than historic levels (Bottom et al., 2005). 435 

Few estuaries are unaffected by anthropogenic stress, and developing a regional network with 436 

management guidelines will be key to coordinating restoration efforts (Merrifield et al., 2011). 437 
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Examining fish responses to environmental variables is a continually developing field, 438 

with many opportunities for refinement (Vasconcelos et al., 2013). It can be difficult to isolate 439 

effects of individual stressors, which can have interactive and cumulative effects (Crain et al., 440 

2008; Halpern et al., 2009; Kroeker et al., 2016), and may be more easily isolated in purpose-441 

designed (i.e., not opportunistic studies that repurpose data), finer-scale studies. For future 442 

studies, conducting fish sampling contemporaneously with updating of stressor measurements 443 

would allow for analysis of dynamic responses. Although laborious, such sampling would build 444 

upon studies in which robustness is affected by the quality of stressor scores (Greene et al., 445 

2015b), submitted fish capture datasets, and the trade-off between data precision and the 446 

requisite scaling necessary for large-scale studies (Jordan et al., 2008; Halpern et al., 2009). At a 447 

global level, patterns of biodiversity can be hierarchical from global to local parameters 448 

(Vasconcelos et al., 2015; Pasquaud et al., 2015), lending credence to continued examination of 449 

scale-dependent responses in stressors and their impacts. 450 

In conclusion, our findings can guide management responses and monitoring programs 451 

aimed at reducing human impacts in coastal areas, specifically the effects of land cover, 452 

pollution, and flow stressors. Impacts of stressors and restoration actions are two areas of study 453 

deserving more attention as to their specific contributions to nursery functions (Munsch et al., 454 

2017). Are there species or life history types that have adapted to human-induced changes to 455 

shoreline and shallow water conditions of estuarine nursery habitats better than others? What 456 

anthropogenic modifications have caused the most harm to which species, and do these affect 457 

seasonal patterns, for example causing fish to prematurely disperse from highly impacted 458 

systems? How can targeted studies address associated management concerns? Given increasing 459 

coastal urban growth and projected sea level rise, there is great potential for restoration actions 460 

that not only enhance shoreline health, but also better protect coastal communities using more 461 

natural approaches (Shepard et al., 2011; Allan et al., 2013; Arkema et al., 2013; Toft et al., 462 

2017). Applying these perspectives into management scenarios will be key to maintaining and 463 

enhancing sustainable coastlines for fish, as well as the growing human population that relies on 464 

these healthy systems for quality of life. 465 A
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Table 1. Stressor scores used in analyses. The 20 Estuaries are listed from north to south, with 704 

stressors of flow, land cover, and pollution from Greene et al. (2015b). 705 

Estuary Flow Land Cover Pollution 

San Juan Islands/Georgia Strait Basin, WA 0.503 0.781 0.5 

Whidbey Basin, WA 0.172 0.448 0.261 

Hood Canal Basin, WA 0.483 0.019 0.275 

South Central Puget Sound Basin, WA 0.39 0.516 0.903 

Grays Harbor, WA 0.158 0.101 0.435 

Columbia River, WA and OR 0 0.37 0.307 

Nehalem River, OR 0.721 0.151 0 

Tillamook Bay, OR 0.649 0.425 0.366 

Nestucca Bay, OR 0.423 0.201 0 

Salmon River, OR 0.367 0.274 0 

Siletz Bay, OR 0.311 0.306 0.284 

Yaquina Bay, OR 0.964 0.083 0.389 

Alsea Bay, OR 0.039 0.119 0.247 

Siuslaw River, OR 0.377 0.179 0.183 

Coos Bay, OR 0.925 0.261 0.449 

Coquille River, OR 0.655 0.772 0.27 

Chetco River, OR 0.682 0.393 0 

Russian River, CA 0.397 0.329 0.596 

San Francisco Bay, CA 0.463 0.800 0.704 

Elkhorn Slough, CA 0.324 0.859 0.802 

 706 

 707 

Figure Captions 708 

Figure 1. Location of the 20 estuaries analyzed, and specific sampling locations.  709 

Figure 2. Percent composition by abundance of data on focal species in each estuary. Estuaries 710 

are sorted descending by latitude from top to bottom. 711 
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Figure 3. Output of GAMMs describing the stressor effect to presence/absence and catch per unit 712 

effort of seven focal species. Parameter estimates are indicated by circles and their 95% 713 

confidence intervals are indicated by bars. Statistically significant (P < 0.05) terms are 714 

highlighted. Parameter estimates of the seawater and tidal fresh zones are reported relative to 715 

estimates of the mixing zone (i.e., the mixing zone is the baseline for salinity zone parameters). 716 

Figure 4. Predicted presence and CPUE, when present, of Chinook salmon among estuaries. 717 

Values were calculated using GAMM parameter estimates and estuary-specific stressor scores. 718 

Figure 5. Predicted CPUE, when present, of English sole among estuaries. Values were 719 

calculated using GAMM parameter estimates and estuary-specific stressor scores. 720 
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