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Abstract

A key stepqin identifying globathange impacten species and ecosystems is to quantify effects
of multiple siressors. To date, the scientglobal change has been dominateddgjional field
studies, experimental manipulation, matelyses, conceptual models, reviews, and studies
focusing on.a.single stressor or species over broad spatial and temporaHsralese provide
one of the first.studie®r coastal systemsxaminingmultiple stessor effects acro$soad
scalesfocused on the nursery function of 20 estuaries spanning 1600 d¢oastline, 25 years

of monitoring, and seveiish and invertebratepeciesalong the northeast Pacific codate
hypothesized thosgpeciesnost estuaringlependent and negatively impacted by human
activitieswould. havdower presence andbundancem estuaries with greater anthropogenic
land cover, pollution, and water flogtress We foundsignificant negative relationships between
juveniles‘ofitworof seven species (Chinook salmon and Englishasualeystuarinstressors
Chinook salmonvere less likely to occur and were less abun@aastuaries with greater
pollution stressThey were k50 less abundant in estuaries with greater 8twssalthough this
relationship was marginally insignificariEnglish solevere less abundamt estuaries with
greater land.covestress Together, we provideew empiricakvidence that effects of stressors
on two fish,species culminate intdetable trendalong thenortheast Pacific cogstlevating the
needfor protectionfrom pollution, land cover, and flow stresstrsheir habitatsLack of
response among the otliete species could be relateddifering resistance to specific
stressors, type and precision of the stressor metrics, and limitations in catch data a@oss est
and habitatsAcquiring improved measuremerakimpacts to speciesill guide future
managerant actions, and help predlwdw estuarine nursery functionan be optimizediven

anthropogenic stressors atlinate change scenarios.
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I ntroduction

An important challengen measuringmpacts ofglobal changés to determindaow multiple
stressors causdhanges to species aedosystem functiorkstuaries and coasts are amdimg
ecosystems that are immenstigeatened yet valuable to people (Costatzh, 1997). Inthese
ecosystemspeopleand theirinteraction with the environmeate aggregated, as arany
ecosystemservices suchfisé production (Beclet al. 2001). Our understanding of global
changen estuaries and coasssderived fronregionalfield studiege.g., hypoxia effects on

flatfish in Elkhorn Slough, CA, USA; Hughesal., 2015),small scaleexperimers (e.g.,

additive, antagonistic or synergistic stressor effects on macroalgaet &lye2015) meta
analysege.g/ synthesizing interactive and cumulative effects of stressors;eCahin2008),
conceptual and theoretical models (e.g., Vinebrablké, 2004), and reviews (e.gynthesesf
multiple stressors on coral reefs; Harboehal., 2017). Studies that examine broad temporal and
spatial scalegend to be conductad freshwateor terrestriakcosystems (e.g., Esselnamal .,

2011 Ceballoset al., 2017),emphasizesingle species acrotager geographic gradients (e.g.,
Cheng et @al.; 2019r a single stressacrosdonger temporal gradients (e.g., Barcetidl.,

2016). Thus, we have an incomplete understanding of how threats from coastal development
impact fish onudarge scales, and how these scalar issues relate to regional management priorities.
Here, weaddessthis knowledge gap by analyzirige effects omultiple stressas on the

presence and abundanceseferfish species that rely onursery functionsf northeast Pacific

coastestuaries

We define a stressor as anthropogenic changes to environmental drivers that affect
estuarine fhabitat quality and the species that occupy those halifegsoSto coasts and
estuariexantake many forms, including shoreline urbanization, pollution, reduced water flows,
and eutrophication (KennisB002;Airoldi & Beck 2007;USEPA 2012;Greeneet al., 2015b).
Although stressors can be documerdadctly, significant effort is required to quantitatively
compare themothe condition opecies, especially giventeractions amongultiple stressors
(Vasconcelegt al., 2007; Kroekeet al., 2016 Lefchecket al., 2017). The managemien
implications of this are reghoth indeveloping methods to contrad@lating stressgrandin
determiningthe ongoingonsequences of these stressors on protésteaties species (Kappel

2005). Ecologisthaverecognized that juvenileygregate in protectivend productive shallow
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habitat mosag of coastal systemand hypothesized that shallow habitats contribute
disproportionally to adult populationBécket al., 2001; Dahlgreret al., 2006 Nagelkerkeret
al., 2015). Thusit is advantageous to investigate effects of stressors omfesiastal systems
becaus€l) juvenilesrely on these systentg provde criticalnurseryhabitats and (2these

systemsre. focal areafr conservation and manageméBecket al., 2001).

To examine the role of multiple stressors acrassheast PacificoastestuariegU.S.
states ofCalifornia, Oregon, and Washingtome focused on seven fish and invertebrate
speciesa subset with ample available catch data of 15 focal spe@e®usly identified by
Hugheset al"™(2014) These speciagpresent major guildare ofcommercial, recreational, and
cultural impartanceand havéife historiesthatencompastargeportionsof northeast Pacific
estuariesspanning more than 1600 km of coastline. Five of thege imanagement targets
through theirdisting under the U.S. Endangered Species Act and/or becauaseetimegortant
fisheries species Chinook salmon@ncorhynchus tshawytscha), coho salmon@ncorhynchus
kisutch), Dungeness cralCancer magister), English sole Rarophrys vetulus), andPacific
herring Clupea pallasii). Two of the specieshoughnot tied tosuch targets — shiner perch
(Cymatogaster-aggregata) andPacific staghorn sculpinéptocottus armatus) —can play
important ecologicalolesin estuarine foodvebsas secondary consumers (Hughied ., 2014).

Our assessment buddn previous gntheses of Pacific coast estuale®nacoet al.,
1990; Emmetetal., 1991; Monacat al., 1992; Gleasoset al., 2011; Hughest al., 2014;
Headyet alt, 2024) by combinindpcation-specificfish samplingwith published values of
stressor scoraadicatinglevels of human impact (below, from Greesial., 2015b).We
focused orhreedifferentclasses o$tressors, representiiy) land cover/land uge.g., amount
developed, change fromatural estuarine classe§) alteration ofluvial processese.g.,
changes inspatterns of flow in rivers entering estugréasd (3) sources of pollution (e.g., toxic
releasesndspollution dischargeshhe largescale stressors that we examiiezudehabitat
alterationghatimpact fish populationgorldwide (Bilkovic & Roggero, 2008; Ablet al., 2013;
Valesiniet al.;"2014) due tgrowing human populains dependent on coastal ecosystem
servicegKennish, 2002UNEP,2006.
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112 Our approach was to compiiaw datafrom beach seineollectionsin shallow waterdo
113  examine effects of stressaym presence and abundancéhefseven focal specie®ur

114  hypothesis was that there would be lower presandeabundancef fish in estuariesvith higher
115  stressor scores for species that were most estudgpendent aridr negatively affected by

116  human impaegts.

117 Materialsand Methods

118 Data Collection

119  We wsed the network of cotad scientists and managers associated thaPacific Marine and
120 Estwarine Fish'Habitat Partnershipgenerate a pdof potential data holders okearshog and
121  estuarine fishFrom this pool, 120 manageasd researchers respondecimnline survey

122 providing deseriptions of the scope and availabilityhefit data This contact list expanded with
123  additional:prefessional referrals and estuspgcific queries of federal and state dategis to
124  fill geographic gapsJltimately, more than200 individuals from 73 different agencies were
125 contactedegarding thelata requesBeach seindata, encompassing the years 1990 to 2014,
126  were combinedrom 22 sampling programs representingedfuariegFig. 1, TableS1). We

127  prioritizeddatasets that sampled multiple species and specifiestdigge or length parameters.
128  Submitted datasets were compiled and uploaded to a Microsoft Access database, based on an
129  observations.@data model that provided a consistent format for the storage avdl i@tpeint

130  observations ina relational database. This approach is designed to facilitate an integrated
131 analysis of large datasets collected by multiple investigators (Horseeigh2008). When

132 geographic coordinates were unavailable, fish observations were resolvedticaan msygon,
133  if metadata allowed. Prior to analysis, data were queried by speciesatiie (when available),
134  and locationtarinclude only samples collected within B&:ificestuary boundaries using

135  currentNational Oceanic and Atmospheric Administration (NOAA) designations.

136 Threughout our data collection and analysis, we observed sources of data variadbility a
137  constraints thaimited the extenta whichwe could apply our analyseSome estuaries were

138 less samplethan others, and not all available datasets were submitted. Therefore,datk of

139  fromoneestuary @ not necessarilindicatethatdatadoes not existf could alsomeanthat the
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data veresimply not available. Data coverage within each estuary varied, as did the precision of
specific measurements of latitude and longitude where sampling occurred. Aldargein

speciedfrom a study focusing on one group (e.g., salmonids) were often binneceralgenels

(e.g., flatfish, cancer crahgndin those casegould not be incorporated into our spedel
assessment.Recent advances in quantitative ecology allowed us to integrate, reduce, and analyze
large scale datasets from varying sourcesigeizing sources of variability such as differences

in experimental'sampling, model parameters, and functional differences in imglbrbfogical
processes (Thorsas al., 2013). Our analysis path was chosen to best account for the variability

and constraints that are expected when combining data from different research groups.

Data Analysis

We compared fish abundances with anthropogenic impacts on estuaries, using the stressor scores
calculated for each estuary by the 2010 National Assessment (Gtekn015b) (Table 1)

which included habitat alterations expected to impact fish populat®insssor scores in Greene

et al. (2015b)"combined 43 indicator datasets into four categories: (1) land covesé&r{@d)u

alteration of river flows, (3) pollubn sources, and (4) eutrophicatidmable S2. Of these, the

first three“eategories had suitable coverage for the 20 estuaries in our study and were used in
subsequent analyses; eutrophication was naided because it had the greatastnber of data

gaps and data were not available for four of the estuaritss analysigGreeneet al., 2015b).
Pollutants,river flow, and land use all showed correlations with eutrophication asasasd in

Greenest al’; (2015b), and this can be used to infer links to eutrophication as a stressor.

Thesremaining three metrics were themselves indices of multiple measures (Tjable S2
Land usefland-cover datasets evaluated recent areal land cover of agriceltelepment, and
estuary habitads well as changes in thedasses durinthe last 20 years. River flodatasets
integrated numeroutow metrics including the number of dams per watershed area as well as
indicators of hydrologic alteration (Richteral., 1996) fom United Stations Geological Survey
(USGS)river flow gages closest to head of tide, using/&é&r averages of mean discharge,
maximum and minimum discharge, high and low pulse duration, as well as the trieaskin t
values across the entire time serfsllution datasets included the number of mines, toxic

release sites, pollution discharge sites, and hazardous waste sites per unit watershed area. Values
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of each stressor were scaled 0 to 1 based on the ranks of individual datasets across estuary
systems in the National Assessment, with higher values indicating greater human impacts
(Greeneet al., 2015b). The land cover stressor index included amount of land developed and
change from natal estuarine classes, theredmknowledging alterations from prisé states
unique to eaeh estuary. These stressors are linked to fish habitat quality ang.de@mtit
example, developmendescribed by stress tand covereduces thamount ofestuarinenursery
habitat availabléo juvenile fish, pollution degrades water quality, and alteration of river flows
changes downstream hydrology of estesu®ur analysis wasonstructedo evaluatehese

associations across systemnd taxa.

Several estuaries with fish data required interpretation of stressor scores from nearby sites
or from newly-acquired data. Monterey Bay values for flow were used in Elkhorn Slough, South
and CentralsBay values were averaged for San Francisco Bay, Drayton Bay values were used for
San Juan(lslands and Georgia Strait Basin, and Puget Sound values were used for South Centra
Puget Sound Basin. We estimated one value describingstteasn the Salmon River, Oregon,
by averaging the neighboring Nestucca and Siletz Rivers, which were similagirageic
locationsandlew: stress valueg~13km to the north and south, respectively, values of 0.423 and
0.311, averagevalue of 0.36We calculated flow stressor values for Coos Bay, Oregon and
Yaquina Bay, Oregon using data made available after the analysis of @rakr{2015b).

We quantified the relationship between species abundance and estuarine sts@s$o0rs
generalized additive mixed models (GAMMSs; Zetial., 2009; Wood, 2011)This modeling
approach was appropriate because fish catches wengonamally distributed, therwere non
linear annual trends in species abundance, and species were repeatedly sampled from the same
estuaries and years. As is typical in fisheries investigations, the data weneflz¢ed and we
therefore fitstwe models for each species: one describing presence or absence of a species
(hereaftermpresence/absence model) and the other descabahgper unit effortGPUE) when
a speciesswas present (hereafter. CPUE model). Presence/absence models were fit using a
binomial distribution and a logit-link function. CPUE models were fit using a ivegainomial
distribution and logink function. We used a negative binomial distribution rather than a Poisson
distribution because, as often occurs in ecological data, the variance of oulatauexceeadk
its mean (Zuuet al., 2009).
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The fixed effects considered for the models were flow, @wekr, and pollution
stressors, and salinity zone. We used salinity zones of freshwatdk@idalppt), mixing (0.525
ppt), and seawater (>25 ppt). Salinity zemeere assigned based on averaged field
measurements from a location. If salinity data were unavailable, we used the ND@qe 3
Average Annual Salinity Digital Geography layer (spatial join w/ 50m buffer). If no field data or
NOAA digital data existed, thlocation was assigned the salinity class of the nearest classified
point (nearest'neighbor ID) and reviewed by a regional expert for accuracy. Each astua
combination‘of'estuary and calendar year was treated as a random infenseatcourddfor
non4independence of samples taken repeatedly from the same system and during the same years
due to unmeasured conditions sfiedb estuaries or years thatre outside the scope of our
study. The'logransformed length of the net was treated as an offset to account for differences in

sampling intensity due to variable net sizes.

We used a smoother to account for annual trends of species abundance using the day of
year as the explanatory variable. Smoothers were constrained to connect daga®6% and
limited to four knots to avoid overfitting the model. The annual timing of Chinook and coho
salmondifferedsamong salinity zones, which was consistent with their anadrofadustbries.
Models describing these species were therefore fit withquarsmoother describing annual
trends in"abundance for each salinity zone. Chinook salmon and herring captured in San
Francisco Bay showed unique trends in annual abundarasampling dates were adjusted so
that peak abundancere centeretb other stuaries. For Chinook salmon, this adjustment was
done separately for each salinity zone to be consistent with the parametersiodiel. The
number of.days: by which to offset dates was determined by visualizing annual tirreotéree
data viadecal@égression and comparing annual peaks in San Francisco Bay to those for all

estuaries'‘combined.

Wesused multmodel inference to select and estimate the values of parameters that
influenced fish abundances. First, we fitted a group of candidate models that included all
combinationstef model parameters describing estuarine stressors. All candidate models included
smoothed day of year and salinity zone parameters because abundances of these fish were well
known to vary among seasons and salinities. If fitting a candidate model produced convergence

warnings, we first eliminated the random effect of year from the global premutif warnings

This article is protected by copyright. All rights reserved



229
230
231
232
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257

persistedve eliminated from consideration the candidate model. From these candidate models
we retained those within 7 AIC of the model with the lowest AIC because this range is likely to
include models ranging in support from “substantial” to “considerably less,” btessgntially
none” (Burnham & Andersor2002). We then reported estimates of parameters calculated by

averaging, when present, their values amthhregretained candidate models.

If parameter estimates suggested a signifidart Q.05) effect of an estuarine stressor on
fish, we performed a sensitivity analysis and cnealgdated our models to examine hoell
they fit and"predicted our data. Given large variance in sampling intensity amoagesstwe
tested how sensitive our models were to the exclusion of data from each estuary. We expected
parameter estimates of a robust model to change minimallydiegeon the presence of data
from any enesestuary. Next, we estimated how well our models fit and predictedztioy da
fitting models=using 80% of the data and examining how well they predicted observatibes i
remaining 20% (Albouy-Boyesat al., 2016). We randomly selected portions of the data for these
training and testing models, and repeated training and testing 10 times for eackomodelify
how our estimates of model fit varied due to the random selection procedure.lfem@Rlels,
we compeed-predicted and observed data using Spearman’s rank correlation coefficient, which
ranges from -1to 1, indicating perfectly negative or positive relationshipgatesely, between
observed and predicted values. For presence/absence models, we cqmgzhctet] and
observed data using the true skill statistic (Allouetha., 2006), which ranges in value from -1
to 1, with values less than zero indicating no predictive ability and 1 indicatingtganddative

ability.

When models indicated a sigiedint relationship between stressors and fish, we used
their outputs to estimate predicted fish catches among estuaries. These metrics were calculated
by makingspredictions from all candidate models within 7 AIC of the model witlotiest AIC
and weightd-averaging their results according to their A{Bsrton, 2016). These predictions
were based'on sampling in the mixing zone and on the median day of year sampled for each
species. Values were classified using Jenks natural breaAksMap 10.4.1 Modeling analysis
was conducted in R version 3.2.2 (R Core Team, 2015) using the mgcv (Wood, 2015) and
MuMIn (Barton, 2016) packages.
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Results

Overall data coverage

There were05,452 individual records of tleevernfocal specie®f juvenile fish and
invertebratesepresenting sampling events spanning the years 1990 tq24lilé ). These

species oceurred broadigross the 20 esties (Fig. 2, but not every combination ektuary

and speciewrasrepreserdgd There was a range of four to seven species in each estuary (mean
5.5), anda'range of 13 to 19 estuaries with coverage for each species (mean 16). If a species was
observedin a givesalinity zonen fewer than three astries, these observations and thus the

parametersestimate for thedlinity zonewere excluded from analysis.

Data Analysis

We fitted presence/absenead CPUEModels for all species (Fig.,3)Jetecting negative effects

of estuarine stressors on Chinook salmon and EnglishlSuepresence and abundance of all
species were greatdatthe spring and summer (e.g., Fig. S1), and the presence and abundance
of manyspecies varied among salinity zones (FigV&ualizations of the raw data and
informationsdescribing candidate mosleised to select and estimate model parameters are
provided in AppendiS1l

The presence of Chinook salmon was significantly lower in estuaries that wexe m
polluted P=0:011 Fig. 3, Appendix S1). Pollution was present in both candidate models used
to estimaté parameters, suggesting that pollution was a major, negative influence on the presence
of Chinook salmonNo single estuargeemedo drive the negative relationship between
pollution and Chinok salmon presence, but this relationship was not statistically significant
whenthreeof 18estuaries were individually excluded (those with the most southern extent).
Models deseribing the presence of Chinook salfnmm part of our data were able to
moderatelypredict observations of the remaining data (true skill statistic m&an @31+
0.0028. The presence of most species varied by salinity zones. For example, both anadromous
salmon species,were less likely to be present in the seawater zanerankely to be in the
tidal fresh zone, whereas English sole, herring, shiner perch, and staghorn sculpin were mor
likely to be present in the seawater zone
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When fish were present, there were significantly fe@feinook salmon in estuaries that
were nore polluted P = 0.04Q Fig. 3, Appendix Sjland significantlyfewer English sole in
estuaries with greater land cosresgP = 0.008 Fig. 3, Appendix S1)There was also a
pattern of fewer Chinook salmon in estuaries with greater $to@ss butthis trend was
marginally insignificant® = 0.057). Only flow and pollution were present in candidate models
used to estimate parameters describing the abundance of Chinook salmon, suggesimyg tha
had major,"negative influences on the abundances$ieciesNo single estuargeened to
drive the negative relationship between pollution and Chinook salmon abundance, but this
relationship was not statistically significant whex of 18 estuaries were individually excluded
(including thessame three as for presence/absence mddadsidition,our models detected
significantly’fewerChinook salmorin estuaries with greatéiow stresswhen data \ere
excluded from siestuaries. Of the five candidate models used to estjpaadeneters describing
abundances of English sole, land cover was only present in one, indicating sigbifidenited
support for.the inclusion of this parameter in the final moded negative relationship between
land coverstress and the abundance of English sole was statistically significant regardless of
whether dataareexcluded from any one estuary. Notably, our models detected significantly
more English sole in estuaries with greater fiivessvhen data wreexcluded from one
estuary Medelsfrom part of our data were moderately able to predict observations of the
remaining data describing abundances of Chinook salmgri@adyreater degreEnglish sole
(Spearman’s rankorrelation coefficient mean 3: 0.27 + 0.0053 and 0.46 + 0.011,
respectively)CRUE for four of the species wardluenced by salinity, with similar patteris

those for species presence/absence

We used GAMM parameter estimates and estspegific stressor scoreseedict
catchesofthetwofishessignificantly affected by stressqsigs. 4 and 5Table ). The
presencand CRUEof Chinook salmonverepredicted to be lower among estuaries with greater
stressvalues of pollution. Thus, GAMM outputs demonstdthat estuaries substantially
affected by these stresspssch as San Francisco Balge South Central basin of Puget Sound,
and Coos and Yaquina Baysould have lower presenemd CPUE ofChinook salmomelative
to less stressegtuariessuch as Nehalemind Chetcdrivers for presence, and Alsea Bay and
the Columbia River for CPURRredicted abundances of English sole were less intlnéeause,
although we detected a significantly negative relationship between their abesdandand
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317  coverstressthis relationshifad limited support in candidate models. Thus, predictions of
318  English sole CPUIeflected the conditions of these estuatteall three stressargredicted
319 abundances were highest in estuaries with greatdtmgsand low to moderate land cover

320 stresssuch as Yaquinand CooBays.

321  Discussion

322  Here we have.provided neemnpirical evidence that the effects of stressors from human land
323  usetover,/pollution, and altered river flosulminate in detectable depressions of some fish

324  species on a coastal scale. Specifically, Chinook salmon were less likely to occur and were less
325 abundantiin/mare polluted estuaries. When present, Chinook salmon also tended to be less
326  abundant'in‘estuasewith greater flow stress, althgh this trend was marginaligsignificant.

327 In addition;"English sole were less abundant in estuaries with greater langttessr Our novel
328 findings build upon regional field studies, experimental manipulath@taaralyses, models,

329 reviews, and studies focusing on a single stressor or species over broad spatial and temporal
330 componentshathave showrstressrscanthreaten fises(Minello et al., 2003; Vinebrookest

331 al., 2004;Crainet al., 2008; Chengt al., 2015; Hughest al., 2015;Vye et al., 2015;Barceldet

332 al., 2016; Harbornet al., 2017;Munschet al., 2017).Estuaries are increasingly drawing

333  conservation attention because of recognition that they serve as critical habitats for fiskt (Beck
334 al.,, 2001)zand we demonstrate on a caedste basis that such efforts are for good reason.

335 The two species that experienced negative stressor effedéiscava to rely on estuarine
336 habitats and respond on finer scales to habitat degradation. Estuaries are impgayt nu
337 habitatsfor.outmigrating juvenile Chinook salmon where they foragelimatizeto marine

338 environmeéntsy,and avoid predat¢®menstacdtt al., 1982; Weitkampet al., 2014 Hugheset al.,
339  2014; Munschetal., 2016). Wild juvenile Chinook salmon use estuarine environments more
340 extensively'than hatchery Chinook salmon (Rical., 2011; Roegnest al., 2012), emphasizing
341  the impertance of these systems for naturptlyduced fish. @ntaminants can accumulate in
342  tissuesof juvenile Chinook salmon (Meadetral., 2016), and impediments to water flow (e.g.,
343 dams) can altethe morphology of nearshore environments i@strict access to criticapriver
344  habitats(O’Connoret al., 2015). There aralso linkages betweamursery habitatand stressors

345 toland cover for English sole. For example, juvehitgylish soldrom estuariesontribute more
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346  to adult populations than do those from coastal waters (Brown, 200&reunshble tohide

347  from predators by burrowing where shoreline armoring has displaced soft se(iofest al.,

348  2007; Munsclet al., 2015). Thusthere are caas explanations that support our observed

349  patternsbetween stresssand habitat use for Chinook salmon and English sole. Accordingly,
350 managers shuld consider that flow, land cover, and pollutgiressorare limiting estuarine

351 habitat use,and, potentially, production of these species.

352 Perhaps whas mostsurprising is that welid not detectoastwide negative effects of

353  stressoropfive,of thespeciesOneexplanation is thatome ofthese speciemaydependesson
354  estuarine habitatsr that theycanuse a wider range of habitats, including novel environments
355 created by people (Hobketal., 2014). For example, fineseale effect®f land cover

356  (Magnussensand Hilborn, 2003) and pollution (Johreah., 2007;Meadoret al., 2016 are

357 moredetectable in Chinook tharo-occurring coho salmon or staghorn sculpin. Juvenile coho
358  salmon typically rear mainly in natal streams and migrate to the ocgaardiags, and may

359 react more to alterations in freshwater rearing areas (but seeslahg2014 for estuary-

360 resident life historiesAlso, documentedhreats tastaghorn sculpin and shiner peiohestuaries
361 areminor(Hughest al., 2014). Another explanatidor lack of trend detectiom some species
362 islimitationsin.our dataFisheries data, especially when acqupgortunisticallyare

363 characterized by low ratios of signal to ngiged imbalanced representation of species, places,
364 and times. We suspect that it is no coincidencettieatlearestrendswere detecteth Chinook
365 salmon, avell-studiedspecies protecteahder the Endanged Species AciA parsimonious

366 interpretation of our resulis that(1) anthropogenistressor®n estuaries probably degrade the
367 habitats ofmany:speciesand(2) we detectedrends between specific stressors and spéuis
368 relied mestienshabitataltered by stressoemd weresampledwvell enough to produce detectable
369 trends.

370 Factors-outside the scope of our study should also be considered in the interpretation o
371 our results#Although we focused on juvenile stages of fish, adulifesbubject tampacts in

372  coastal zonesx(Lesteral., 2010; Archambaukt al., in press)as are eggs and larval

373  development by loss of spawning habitat (Siple & Francis, 2016). Analysis of histangecis

374  another approdc and has showmegative athropogenic effects oRaific herring(Greenect

375 al., 2015a). Other environmental factors contribute, such as Dungeness crab fluatu@titog
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hypoxia caused by anthropogenic nutrient loading in estuaries, and upwelling conditions in open-
coast systemgJranthanet al., 2004).We note that the stressors we analyzed correlate with
eutrophication (Greeret al., 2015b), and have been used in other studies as a proxy for
eutrophication (e.g., landsver in Honiget al., 2017), suggestmthatstressors suchs
eutrophicatien.aralsocontributing factorsBeach seines sampdéallow watersand thus

implications_ are centeredhagiverine estuaries mainly in Washington and Oregon, in part because
species'suchas Dungeness crab, English sole, and Pacific herring are more apt to occupy colder
deeper waters'in the southern part of their range in California. Our fogresence and

abundancef seven species also precluded an assemblage, density, or species richness analysis
(Monacoetal 41992; Harleyet al., 2001; Courragt al., 2009; Nicolaset al., 2010) which

would provideradditional information such how climatedriven pocessesféect fish

community structure (Feyret al., 2015; Barcel@t al., 2016).All of these examples illustrate

that some stressors have more identifiable impacts than others, depending on a myriad of factors
that can be estuary, habitat, or species andi#gespecific, and varying on spatial

biogeographieiand temporal scales.

Independent of stressors, we also demonstrated associatfisspiecies with salinity
zones, which.can inform specisgecific responses to climate impacts, such as changes in river
flow and sea'level rise. These associations are well appreciated among estuarine biologists, but
broad landscape patterns have often been based more on expert knowledge @vBina@n0)
than on quantitative information across systems. Our analysis revealed strongfiassoci
consistent with contrasting life histories of our focal species: juvenile salmon enter estuaries after
migratingdewnstream from riverine spawning grounds, and so show negative associations with
the highersalinity zone as they move offshemnay from shallow waters, amather potential
reasons"such as mortality as theymigrate. In contrast, marine fish, such as English sole,
spawn in coastal areas, thus associations favor higher salinities. Systematic data on salinity
variation would.ikely highlight even stronger associations, as salinity zoneheage
dramatically within and between years in response @ao@és in river hydrographs (Yang &
Khangaonkar, 2008) and seasonal closures of estuaries by sand spits (Bedhre2313).
Nevertheless, these patterns suggest thattlenmgimpacts of climate change, such as changes in
riverine hydrographs and sead¢rise, are an essential consideration for estual@pendent

speciesand may alter habitat and species distributions.
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Considering our findings, what care doto promotehe sustainability of fish that
depend on estuaries duriogtical life-stagesTirst, we can minimizer continue to ban
contaminants, such as polychlorinated biphenyls (PCBspénaistin riverine andestuarine
food websyears_after chemicaise is discontinued (e.g., Westl., 2017). In particular,
Chinook salmen near wastater treatment plants accumulate many contaminants of emerging
concern (Meadogt al., 2016), including some thatpair liver mitochondrial function (Y elet
al., 2017).Next,"we can conserve ggstorebiogenic fish habitaté.g., seagrass meadows,
oyster reefsjhat maintain water quality for coastal systeim# have been degraded due to
human activities (Lotzet al., 2006;Lambet al., 2017). Managing water flow is an ongoing
challenge jirceastal systems worldwide, and maintaining a balance between humaifengeds
water consumption and diversion; Cloern & Jassby, 2012), and fish health will be key to
sustaining coastal ecosystem services. We carredsme land covestressy minimizing
impervious surfaceparticularly shoreline armoringatdegradesoastalish habitats (Munsch
et al., 2017). Finally, weanconserveor repairlost connectivity across the estuarine landscape
The size of+-availlable nursery area can lead to higher estuary production (B@p@004),
and juvenile English sole may rely on different parts of the esaiaifferent times (Chittaret
al., 2009);suggesting thahey benefit from habitahosaics that are not fragmented by threats to
land coverOverall, there are many ways that we can improve the quality of estuarine habitats,
and our study suggests that certain species, particularly durirggddes associated with

shallow watersmay espond to conservation efforts that target specific stressors.

Targeting the stressors in our analysis as a management goal will be challenging,
especially withscontinued coastal development in the ecotone between land andHalgmn(
et al., 2009)=-Fhe estuaries predicted to have lower abundance of Chinook salmon have
substantial"htiman impacts witlimerous drivers of change and correspontigigdeclines
(e.g., San Frangisco Bay and Puget Sound; Emenatt 2000; Brown & Moyle, 2005).
Furthermore, estuaries with low stressor values and high preflgtedimbers (many on the
Oregon‘coast) dzsnot imply that there are no impacts. For example, 8tressn the Columbia
River is represented as low (Greahal., 2015b) because it cé&s large volumes of water
despite documented human impacts and lower flows than historic levels (Bbabn2005).
Few estuaries are unaffected by anthropogenic stress, and developing a regionkivm#twor
management guidelines will be key to coaating restoration efforts (Merrifielet al., 2011).
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Examining fish responses to environmental variables is a continually developahg fie
with many opportunitiefor refinement (Vasconcel@s al., 2013). It can be difficult to isolate
effects of indivdual stressors, which can have interactive and cumulative effects éCahin
2008; Halperret al., 2009; Kroekegt al., 2016), and may be more easily isolated in purpose-
designed (i.es.not opportunistic studies that repurpose data)séialerstudis. For future
studies, conducting fish sampling contemporaneously with updatstgestor measurements
would allowfoer-analysis of dynamic responses. Although laborious, such sampling would build
upon studien'which robustness is affected by the quality of stressor scores (& etne
2015b), submitted fish capture datasets, and the trade-off between data precidien and t
requisite sealing necessary for lasgmle studie§Jordaret al., 2008; Halperret al., 2009. At a
global levelypatterns of biodiversity can be hierarchical from global to local parameters
(Vasconcelost al., 2015; Pasquauet al., 2015), lending credence to continued examination of
scaledependent responses in stressors and their impacts.

In conclusion, our findings can guideanagement respons&sd monitoring programs
aimed at reducingumanimpactsin coastal areaspecifically the effects dand cover,
pollution, andflow stressorsimpacts of stressoend restoration actions are two areas of study
deservingsmore attention as to their specific contributions to nursery fun@onschet al.,
2017) Aresthere species life history types that have adapted to human-induced changes to
shoreline and shallow water conditiarfsestuarine nursery habitats better than others? What
anthropogenic modifications have caused the most harm to which species, and difeittese a
seasonal patterns, for examphusing fish to prematurely disperse from highipacted
systemsHow:cantargetedstudiesaddressssociatednanagement concerns? Given increasing
coastal urban growth and projected sea level rise, there is great potential for resiotin
thatnot only enhance shoreline healbiit also betteprotect coastal communities using more
natural approaches (Shepatdl., 2011;Allan et al., 2013;Arkemaet al., 2013;Toft et al.,

2017). Applying'these perspectivego management scenariwvdl be key to maintaining and
enhancing.sustainable coastliriesfish, as well ashe growing human population that relies on

these healthy,systems for quality of life.
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Table 1. Stressor scores used in analyses. The 20 Estuaries are listed tnaion smirth, with
stressors of flow, land cover, and pollution from Greetrad. (2015b).

Estuary Flow Land Cover Pollution
San Juan Islands/Georgia Strait Basin, V 0.503 0.781 0.5
Whidbey Basin, WA 0.172 0.448 0.261
Hood Canal Basin, WA 0.483 0.019 0.275
South 'Central’Puget Sound Basin, WA 0.39 0.516 0.903
Grays Harbor,"WA 0.158 0.101 0.435
Columbia River, WA and OR 0 0.37 0.307
NehalemRiver, OR 0.721 0.151 0
Tillamook'Bay, OR 0.649 0.425 0.366
Nestucca Bay, OR 0.423 0.201 0
Salmon River, OR 0.367 0.274 0
Siletz Bay, OR 0.311 0.306 0.284
Yaquina Bay;;OR 0.964 0.083 0.389
Alsea Bay; OR 0.039 0.119 0.247
Siuslaw'River, OR 0.377 0.179 0.183
Coos Bay;"OR 0.925 0.261 0.449
Coquille River, OR 0.655 0.772 0.27
Chetco River, OR 0.682 0.393 0
Russian River, CA 0.397 0.329 0.596
San Franciseo Bay, CA 0.463 0.800 0.704
Elkhorn Slough, CA 0.324 0.859 0.802

Figure Captions
Figure L. Location of the 20 estuaries analyzed, and specific sampling locations.
Figure 2. Percent composition by abundance of data on focal species in each estuatgsEs

are sorted descending by latitude from top to bottom.
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Figure 3. Output o6AMMSs describing the stressor effect to presence/absence and catch per unit
effort of seven focal species. Parameter estimates are indicated by circles and their 95%
confidence intervals are indicated by bars. Statistically signifi€aqtQ.05) terms are

highlighted Parameter estimates of the seawater and tidal fresh zones are reported relative to

estimates of.the mixing zone (i.e., the mixing zone is the baseline for salinity zone parameters).

Figure 4. Predicted presence and CPUE, when present, of Chinook salmon among estuaries.
Values weére calculated using GAMM parameter estimates and espenwic stressor scores.

Figure 5. Predicted CPUE, when present, of English sole among estuaries. Values were
calculated.using GAMM parameter estimates and gs&@ecific stressor scores.
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